资源类型

期刊论文 1839

年份

2024 3

2023 146

2022 163

2021 152

2020 160

2019 136

2018 116

2017 114

2016 77

2015 95

2014 59

2013 50

2012 43

2011 54

2010 51

2009 58

2008 69

2007 80

2006 50

2005 40

展开 ︾

关键词

神经网络 9

遗传算法 9

增材制造 8

优化 7

可持续发展 5

多目标优化 4

机器学习 4

目标识别 4

预测 4

BP神经网络 3

COVID-19 3

创新 3

显微硬度 3

算法 3

CAN总线 2

Cu(In 2

GIS 2

GPS 2

HY-2 2

展开 ︾

检索范围:

排序: 展示方式:

Advances in polishing of internal structures on parts made by laser-based powder bed fusion

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0724-0

摘要: The internal structures of metallic products are important in realizing functional applications. Considering the manufacturing of inner structures, laser-based powder bed fusion (L-PBF) is an attractive approach because its layering principle enables the fabrication of parts with customized interior structures. However, the inferior surface quality of L-PBF components hinders its productization progress seriously. In this article, process, basic forms, and applications relevant to L-PBF internal structures are reviewed comprehensively. The causes of poor surface quality and differences in the microstructure and property of the surface features of L-PBF inner structures are presented to provide a perspective of their surface characteristics. Various polishing technologies for L-PBF components with inner structures are presented, whereas their strengths and weaknesses are summarized along with a discussion on the challenges and prospects for improving the interior surface quality of L-PBF parts.

关键词: laser-based powder bed fusion     polishing     internal structures     surface quality     surface features     post process     additive manufacturing    

Orientation effect of electropolishing characteristics of 316L stainless steel fabricated by laser powderbed fusion

《机械工程前沿(英文)》 2021年 第16卷 第3期   页码 580-592 doi: 10.1007/s11465-021-0633-7

摘要: 3D metal printing process has attracted increasing attention in recent years due to advantages, such as flexibility and rapid prototyping. This study aims to investigate the orientation effect of electropolishing characteristics on different surfaces of 316L stainless steel fabricated by laser powder bed fusion (L-PBF), considering that the rough surface of 3D printed parts is a key factor limiting its applications in the industry. The electropolishing characteristics on the different surfaces corresponding to the building orientation in selective laser melting are studied. Experimental results show that electrolyte temperature has critical importance on the electropolishing, especially for the vertical direction to the layering plane. The finish of electropolished surfaces is affected by the defects generated during L-PBF process. Thus, the electropolished vertical surface has higher surface roughness Sa than the horizontal surface. The X-ray photoelectron spectroscopy spectra show that the electropolished horizontal surface has higher Cr/Fe element ratio than the vertical surface. The electropolished horizontal surface presents higher corrosion resistance than the vertical surface by measuring the anodic polarization curves and fitting the equivalent circuit of experimental electrochemical impedance spectroscopy.

关键词: electropolishing     laser powder bed fusion     316L stainless steel     corrosion resistance     microstructure    

alloying of CoCrFeMnNi high-entropy alloy from elemental feedstock toward high-throughput synthesis via laserpowder bed fusion

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0727-x

摘要: High-entropy alloys (HEAs) are considered alternatives to traditional structural materials because of their superior mechanical, physical, and chemical properties. However, alloy composition combinations are too numerous to explore. Finding a rapid synthesis method to accelerate the development of HEA bulks is imperative. Existing in situ synthesis methods based on additive manufacturing are insufficient for efficiently controlling the uniformity and accuracy of components. In this work, laser powder bed fusion (L-PBF) is adopted for the in situ synthesis of equiatomic CoCrFeMnNi HEA from elemental powder mixtures. High composition accuracy is achieved in parallel with ensuring internal density. The L-PBF-based process parameters are optimized; and two different methods, namely, a multi-melting process and homogenization heat treatment, are adopted to address the problem of incompletely melted Cr particles in the single-melted samples. X-ray diffraction indicates that HEA microstructure can be obtained from elemental powders via L-PBF. In the triple-melted samples, a strong crystallographic texture can be observed through electron backscatter diffraction, with a maximum polar density of 9.92 and a high ultimate tensile strength (UTS) of (735.3 ± 14.1) MPa. The homogenization heat-treated samples appear more like coarse equiaxed grains, with a UTS of (650.8 ± 16.1) MPa and an elongation of (40.2% ± 1.3%). Cellular substructures are also observed in the triple-melted samples, but not in the homogenization heat-treated samples. The differences in mechanical properties primarily originate from the changes in strengthening mechanism. The even and flat fractographic morphologies of the homogenization heat-treated samples represent a more uniform internal microstructure that is different from the complex morphologies of the triple-melted samples. Relative to the multi-melted samples, the homogenization heat-treated samples exhibit better processability, with a smaller composition deviation, i.e., ≤ 0.32 at.%. The two methods presented in this study are expected to have considerable potential for developing HEAs with high composition accuracy and composition flexibility.

关键词: laser powder bed fusion (L-PBF)     in situ alloying     high-entropy alloys     heat treatment     rapid synthesis    

Development of lunar regolith composite and structure via laser-assisted sintering

《机械工程前沿(英文)》 doi: 10.1007/s11465-021-0662-2

摘要: Aiming at the exploration and resource utilization activities on the Moon, in situ resource utilization and in situ manufacturing are proposed to minimize the dependence on the ground transportation supplies. In this paper, a laser-assisted additive manufacturing process is developed to fabricate lunar regolith composites with PA12/SiO2 mixing powders. The process parameters and composite material compositions are optimized in an appropriate range through orthogonal experiments to establish the relationship of process–structure–property for lunar regolith composites. The optimal combination of composite material compositions and process parameters are mixing ratio of 50/50 in volume, laser power of 30 W, scanning speed of 3500 mm/s, and scanning hatch space of 0.2 mm. The maximum tensile strength of lunar regolith composites reaches 9.248 MPa, and the maximum depth of surface variation is 120.79 μm, which indicates poor powder fusion and sintering quality. Thereafter, the mechanical properties of laser-sintered lunar regolith composites are implemented to the topology optimization design of complex structures. The effectiveness and the feasibility of this laser-assisted process are potentially developed for future lightweight design and manufacturing of the solar panel installed on the lunar rover.

关键词: in situ manufacturing     laser-assisted powder fusion process     mechanical properties     topological structure design    

一种新型激光打印压缩诱导扭转柔顺机构的成型过程和力学变形行为 Article

高捷, 顾冬冬, 马成龙, 戴冬华, 席丽霞, 林开杰, 高彤, 朱继宏, 杜月欣

《工程(英文)》 2022年 第15卷 第8期   页码 133-142 doi: 10.1016/j.eng.2021.03.032

摘要:

本文采用激光粉末床熔融(LPBF)技术成型了一种基于自由约束拓扑(FACT)方法设计的新型压缩诱导扭转(CIT)柔顺机构。研究了LPBF 打印参数对激光打印CIT 柔顺机构成型性和压缩性能的影响。在375~450 W的优化激光功率范围内,样品的致密化水平均保持在98%以上,所获得的LPBF制造的CIT柔顺机构的相对密度随施加激光功率的变化不明显。增加激光功率有利于消除CIT 柔顺机构斜杆内的残余冶金孔隙。在450 W的激光功率下实现了0.2%的最高尺寸精度和20 μm的最低表面粗糙度。LPBF成型CIT柔顺机构的变形行为表现为四个典型阶段:弹性阶段、非均匀塑性变形阶段、强度破坏阶段和变形破坏阶段(或不稳定变形阶段)。采用450 W激光功率最优成形的CIT 柔顺机构在破坏前的累积压缩应变可达20%,展现了较大的变形能力。通过有限元模拟和实验验证相结合的方法,研究了CIT 柔顺机构的扭转行为和力学性能。在LPBF成型CIT柔顺机构的应变达到15%之前实现了轴向压缩应变与旋转角度之间的近似线性关系。

关键词: 激光3D打印     激光粉末床熔融     压缩诱导扭转柔顺机构     压缩-扭转性能     力学性能    

Review of materials used in laser-aided additive manufacturing processes to produce metallic products

Xiaodong NIU, Surinder SINGH, Akhil GARG, Harpreet SINGH, Biranchi PANDA, Xiongbin PENG, Qiujuan ZHANG

《机械工程前沿(英文)》 2019年 第14卷 第3期   页码 282-298 doi: 10.1007/s11465-019-0526-1

摘要: Rapid prototyping (RP) or layered manufacturing (LM) technologies have been extensively used to manufacture prototypes composed mainly of plastics, polymers, paper, and wax due to the short product development time and low costs of these technologies. However, such technologies, with the exception of selective laser melting and sintering, are not used to fabricate metallic products because of the resulting poor life, short cycle, poor surface finish, and low structural integrity of the fabricated parts. The properties endowed by these parts do not match those of functional parts. Therefore, extensive research has been conducted to develop new additive manufacturing (AM) technologies by extending existing RP technologies. Several AM technologies have been developed for the fabrication of metallic objects. These technologies utilize materials, such as Ni-, Al-, and Ti-based alloys and stainless steel powders, to fabricate high-quality functional components. The present work reviews the type of materials used in laser-based AM processes for the manufacture of metallic products. The advantages and disadvantages of processes and different materials are summarized, and future research directions are discussed in the final section. This review can help experts select the ideal type of process or technology for the manufacturing of elements composed of a given alloy or material (Ni, Ti, Al, Pb, and stainless steel).

关键词: direct metal deposition     laser-based manufacturing     rapid manufacturing     selective laser melting     additive manufacturing    

微观选择性激光熔化技术发展的现状及未来展望 Review

Balasubramanian Nagarajan, Zhiheng Hu, Xu Song, Wei Zhai, Jun Wei

《工程(英文)》 2019年 第5卷 第4期   页码 702-720 doi: 10.1016/j.eng.2019.07.002

摘要:

增材制造(AM)能将各种材料制成形状复杂的部件,因此在制造业中越来越受到青睐。选择性激光熔化(SLM)是一种常见的AM技术,它基于粉床熔融法(PBF)来处理金属,但目前只专注于大中型元件的制作。本文综述了微型金属材料SLM的研究现状。与通常用于微观AM的直接写入技术相比,微观SLM由于许多因素而更加具有吸引力,包括更快的周期时间、流程简单性和材料通用性。此外,本文综合评价了利用SLM和选择性激光烧结(SLS)制造微尺度零件的各种研究工作和商业系统,不仅从微观尺度上找出了SLM存在的问题,包括粉末重涂、激光光学和粉末粒度等, 还详细阐述了SLM未来的发展方向。文章详细回顾了粉床技术中现有的粉末重涂方法,并描述了在AM领域实施干粉分配方法的新进展。对AM部件的一些二次整理技术进行了回顾,重点介绍了细微加工特征的应用以及与微观SLM系统的结合。

关键词: 增材制造     选择性激光熔化     微细加工     混合处理     粉床重涂    

Two-dimensional modeling of sintering of a powder layer on top of nonporous substrate

Tiebing CHEN, Yuwen ZHANG,

《机械工程前沿(英文)》 2010年 第5卷 第2期   页码 143-148 doi: 10.1007/s11465-010-0006-0

摘要: Selective laser sintering (SLS) of a two-component metal powder layer on the top of multiple sintered layers by a moving Gaussian laser beam is modeled. The loose metal powder layer is composed of a powder mixture with significantly different melting points. The physical model that accounts the shrinkage induced by melting is described by using a temperature-transforming model. The effects of the porosity and the thickness of the atop loose powder layer with different numbers of the existing sintered metal powder layers below on the sintering process are numerically investigated. The present work will provide a better understanding to simulate much more complicated three-dimensional SLS process.

关键词: laser     sintering     melting     solidification     heat transfer    

基于飞秒激光的用于捕获肿瘤细胞的聚合物芯片实验室的智能程序 Article

Annalisa Volpe, Udith Krishnan, Maria Serena Chiriacò, Elisabetta Primiceri, Antonio Ancona, Francesco Ferrara

《工程(英文)》 2021年 第7卷 第10期   页码 1436-1442 doi: 10.1016/j.eng.2020.10.012

摘要:

由于聚合物芯片实验室具有高度的精准性和灵活性,将其用于设计和制造的快速原型制作方法正在兴起。例如,一个微流控平台可能需要优化阶段,而在此阶段需要不断修改结构和几何形状;然而,这只有在具有简易可控的制造方法和低成本材料的情况下才可能实现。本文描述了一个微流控工具的实现过程,从计算机辅助设计(CAD)到作为循环肿瘤细胞(CTC)捕获工具应用的概念验证。整个平台通过使用聚甲基丙烯酸甲酯(PMMA)及结合飞秒(fs)激光和微铣制造技术实现。该多层设备通过一种简便、低成本的溶剂辅助方法组装。然后通过固定能够在没有标记的情况下区分癌细胞与非癌细胞的捕获探针,实现蛇形微通道的直接生物功能化。由于低材料成本、可定制的方法以及可生物应用,已实现的平台成为即时医疗工业开发与应用的合适模型。

关键词: 芯片实验室     飞秒激光     循环肿瘤细胞     即时医疗     热键合     聚合物    

Gradient-based compressive image fusion

Yang CHEN,Zheng QIN

《信息与电子工程前沿(英文)》 2015年 第16卷 第3期   页码 227-237 doi: 10.1631/FITEE.1400217

摘要: We present a novel image fusion scheme based on gradient and scrambled block Hadamard ensemble (SBHE) sampling for compressive sensing imaging. First, source images are compressed by compressive sensing, to facilitate the transmission of the sensor. In the fusion phase, the image gradient is calculated to reflect the abundance of its contour information. By compositing the gradient of each image, gradient-based weights are obtained, with which compressive sensing coefficients are achieved. Finally, inverse transformation is applied to the coefficients derived from fusion, and the fused image is obtained. Information entropy (IE), Xydeas’s and Piella’s metrics are applied as non-reference objective metrics to evaluate the fusion quality in line with different fusion schemes. In addition, different image fusion application scenarios are applied to explore the scenario adaptability of the proposed scheme. Simulation results demonstrate that the gradient-based scheme has the best performance, in terms of both subjective judgment and objective metrics. Furthermore, the gradient-based fusion scheme proposed in this paper can be applied in different fusion scenarios.

关键词: Compressive sensing (CS)     Image fusion     Gradient-based image fusion     CS-based image fusion    

Effect of process parameters on the density and porosity of laser melted AlSi10Mg/SiC metal matrix composite

Omotoyosi H. FAMODIMU, Mark STANFORD, Chike F. ODUOZA, Lijuan ZHANG

《机械工程前沿(英文)》 2018年 第13卷 第4期   页码 520-527 doi: 10.1007/s11465-018-0521-y

摘要:

Laser melting of aluminium alloy—AlSi10Mg has increasingly been used to create specialised products in various industrial applications, however, research on utilising laser melting of aluminium matrix composites in replacing specialised parts have been slow on the uptake. This has been attributed to the complexity of the laser melting process, metal/ceramic feedstock for the process and the reaction of the feedstock material to the laser. Thus, an understanding of the process, material microstructure and mechanical properties is important for its adoption as a manufacturing route of aluminium metal matrix composites. The effects of several parameters of the laser melting process on the mechanical blended composite were thus investigated in this research. This included single track formations of the matrix alloy and the composite alloyed with 5% and 10% respectively for their reaction to laser melting and the fabrication of density blocks to investigate the relative density and porosity over different scan speeds. The results from these experiments were utilised in determining a process window in fabricating near-fully dense parts.

关键词: selective laser melting     additive manufacturing     mechanical alloying     powder metallurgy     aluminium metal matrix composite    

Aging properties and aging mechanism of activated waste rubber powder modified asphalt binder based on

《结构与土木工程前沿(英文)》 2023年 第17卷 第4期   页码 625-636 doi: 10.1007/s11709-023-0938-1

摘要: The research and development of high-performance pavement materials has been intensified owing to the demand for long-life pavements. This study is performed to develop a novel pavement material using waste rubber powder, waste lubricating by-product (LBP), and asphalt. Subsequently, the aging properties and aging mechanism of activated waste rubber powder modified asphalt (ARMA) are investigated based on its rheological properties and micro-characterization. The rheological results show that, compared with waste rubber powder modified asphalt (RMA), ARMA offers a higher aging resistance and a longer fatigue life. A comparison and analysis of the rheological aging parameters of ARMA and RMA show that LBP activation diminishes the aging sensitivity of ARMA. The micro-characterization result shows that the aging of ARMA may be caused by the fact that LBP-activated waste rubber powder is more reactive and can form a dense colloidal structure with asphalt. Therefore, the evaporation loss of asphalt light components by heat and the damage to the colloidal structure by oxygen during the aging process are impeded, and the thermal-oxidative aging resistance of ARMA is improved.

关键词: rubber powder modified asphalt     aging     mechanism     rheological     characterization    

基于激光粉床熔融镍合金(Inconel 718)加热凝固分析的数值模拟和实验分析

Patcharapit Promoppatum, Shi-Chune Yao, P. Chris Pistorius, Anthony D. Rollett

《工程(英文)》 2017年 第3卷 第5期   页码 685-694 doi: 10.1016/J.ENG.2017.05.023

摘要:
有限元模型和Rosenthal 方程在激光粉床熔融Inconel 718 合金热学现象及微观研究方面具有广泛应用。通过了解 Rosenthal 方程(该方程为有限元分析提供了一种非同寻常的方法)的优点及缺点,研究潜在假设对于估计结果的影响,结合实验对材料物理特性进行对比分析。本文结合有限元模型及 Rosenthal 分析方程预测熔池形状并与文献实验做比较,结果表明这两种方法均能够提供合理准确的估计结果,包括预测出柱状凝固微结构和一次枝晶间距(PDAS)值,与实验结果符合良好。与此同时,基于吸收率选择的灵敏度分析表明,与有限元法相比,Rosenthal 法对吸收率更为敏感,其原因可能是 Rosenthal 法忽略辐射和对流造成的能量流失。

关键词: 增材制造     有限元建模     Rosenthal方程     微结构     物质的热行为     Inconel 718合金    

Manufacturing cost constrained topology optimization for additive manufacturing

Jikai LIU, Qian CHEN, Xuan LIANG, Albert C. TO

《机械工程前沿(英文)》 2019年 第14卷 第2期   页码 213-221 doi: 10.1007/s11465-019-0536-z

摘要: This paper presents a manufacturing cost constrained topology optimization algorithm considering the laser powder bed additive manufacturing process. Topology optimization for additive manufacturing was recently extensively studied, and many related topics have been addressed. However, metal additive manufacturing is an expensive process, and the high manufacturing cost severely hinders the widespread use of this technology. Therefore, the proposed algorithm in this research would provide an opportunity to balance the manufacturing cost while pursuing the superior structural performance through topology optimization. Technically, the additive manufacturing cost model for laser powder bed-based process is established in this paper and real data is collected to support this model. Then, this cost model is transformed into a level set function-based expression, which is integrated into the level set topology optimization problem as a constraint. Therefore, by properly developing the sensitivity result, the metallic additive manufacturing part can be optimized with strictly constrained manufacturing cost. Effectiveness of the proposed algorithm is proved by numerical design examples.

关键词: topology optimization     manufacturing cost     additive manufacturing     powder bed    

用于粉末床增材制造的铬镍铁合金粉末特征研究

Quy Bau Nguyen, Mui Ling Sharon Nai, Zhiguang Zhu, Chen-Nan Sun, Jun Wei, Wei Zhou

《工程(英文)》 2017年 第3卷 第5期   页码 695-700 doi: 10.1016/J.ENG.2017.05.012

摘要:

本研究中使用不同的粉末表征技术对铬镍铁合金的原始粉末和回收粉末在粉末床增材制造(AM)上的流动特性、行为特征进行研究。结果发现,选择性激光熔化(SLM)工艺的粒径分布(PSD)范围通常在15 ~ 63 μm 之间。原始的铬镍铁合粉末的流量约为28 s·(50 g)–1,组装密度是60%。流变测试结果表明,原始粉末与回收粉末相比具有更好的流动性。讨论了两种粉末之间的相互关系。运用铬镍铁合金粉末已经成功打印出了螺旋桨。实验结果表明铬镍铁合金粉末适用于增材制造(AM),本研究为生产增材制造粉末提供参考。

关键词: 增材制造     粉末特征     气体雾化     微观结构     铬镍铁合金    

标题 作者 时间 类型 操作

Advances in polishing of internal structures on parts made by laser-based powder bed fusion

期刊论文

Orientation effect of electropolishing characteristics of 316L stainless steel fabricated by laser powderbed fusion

期刊论文

alloying of CoCrFeMnNi high-entropy alloy from elemental feedstock toward high-throughput synthesis via laserpowder bed fusion

期刊论文

Development of lunar regolith composite and structure via laser-assisted sintering

期刊论文

一种新型激光打印压缩诱导扭转柔顺机构的成型过程和力学变形行为

高捷, 顾冬冬, 马成龙, 戴冬华, 席丽霞, 林开杰, 高彤, 朱继宏, 杜月欣

期刊论文

Review of materials used in laser-aided additive manufacturing processes to produce metallic products

Xiaodong NIU, Surinder SINGH, Akhil GARG, Harpreet SINGH, Biranchi PANDA, Xiongbin PENG, Qiujuan ZHANG

期刊论文

微观选择性激光熔化技术发展的现状及未来展望

Balasubramanian Nagarajan, Zhiheng Hu, Xu Song, Wei Zhai, Jun Wei

期刊论文

Two-dimensional modeling of sintering of a powder layer on top of nonporous substrate

Tiebing CHEN, Yuwen ZHANG,

期刊论文

基于飞秒激光的用于捕获肿瘤细胞的聚合物芯片实验室的智能程序

Annalisa Volpe, Udith Krishnan, Maria Serena Chiriacò, Elisabetta Primiceri, Antonio Ancona, Francesco Ferrara

期刊论文

Gradient-based compressive image fusion

Yang CHEN,Zheng QIN

期刊论文

Effect of process parameters on the density and porosity of laser melted AlSi10Mg/SiC metal matrix composite

Omotoyosi H. FAMODIMU, Mark STANFORD, Chike F. ODUOZA, Lijuan ZHANG

期刊论文

Aging properties and aging mechanism of activated waste rubber powder modified asphalt binder based on

期刊论文

基于激光粉床熔融镍合金(Inconel 718)加热凝固分析的数值模拟和实验分析

Patcharapit Promoppatum, Shi-Chune Yao, P. Chris Pistorius, Anthony D. Rollett

期刊论文

Manufacturing cost constrained topology optimization for additive manufacturing

Jikai LIU, Qian CHEN, Xuan LIANG, Albert C. TO

期刊论文

用于粉末床增材制造的铬镍铁合金粉末特征研究

Quy Bau Nguyen, Mui Ling Sharon Nai, Zhiguang Zhu, Chen-Nan Sun, Jun Wei, Wei Zhou

期刊论文